
 107

COMPUTER SCIENCE (868)

Aims

1. To enable students to comprehend basic concepts

and practices for problem solving using

computers.

2. To develop an understanding of how computers

store and process data.

3. To develop the ability to describe the major

components of computer hardware, their functions

and interaction.

4. To develop the ability to analyze applications as

systems of interacting objects.

5. To enable students to solve problems using

algorithmic techniques using the approach of

classes and objects.

6. To develop the ability to devise, test, code, debug,

documents and validate programs to implement

various algorithms.

7. To develop an appreciation of the implications of

computer use in everyday life in contemporary

society.

8. To create an awareness of ethical issues related to

computing.

CLASS XI

There will be two papers in the subject:

Paper I: Theory - 3 hours ….100 marks

Paper II: Practical - 3 hours ….100 marks

PAPER I -THEORY

Paper 1 shall be of 3 hours duration and be divided

into two parts.

Part I (30 marks): This part will consist of

compulsory short answer questions, testing

knowledge, application and skills relating to

elementary/fundamental aspects of the entire syllabus.

Part II (70 marks): This part will be divided into two

Sections, A and B. Candidates are required to answer

three questions out of five from Section A and four

questions out of six from Section B. Each question in

this part shall carry 10 marks.

SECTION A

Basic Computer hardware and software:

1. Review of Number systems (decimal, binary,

hexadecimal) and arithmetic.

(a) Number systems, base of a number system -

decimal, binary, octal, hexadecimal

representation, conversion between various

representations, character representations

(ASCII, ISCII, Unicode).

(b) Representations for integers, real numbers,

limitations of finite representations.

(c) Internal structure of a computer, a simple

decimal load and store computer and its

machine language, instruction format,

registers, program counter, instruction

register; register addressing modes,

instruction cycle, assembly language for the

same computer, simple algorithms in

assembly language.

2. Review of basic computer hardware and software;

basic concepts about operating systems, file

systems.

CPU, the clock, cache memory, primary memory,

secondary memory, input and output devices,

communication devices (the aim is not to

describe/discuss an exhaustive list of devices but

to understand what parts are present in a typical

computer and what is the function of each part).

The boot process, operating system (resource

management and command processor), file

system.

i) Boot process, operating systems - resource

management, command processing.

ii) Directories, files and hierarchical file system.

iii) Programming languages (machine language,

assembly language, high level language).

 108

iv) Compilers and interpreters.

v) Application software.

3. Propositional logic, well formed formulae, truth

values and interpretation of well formed formulae,

truth tables, basic ideas and results about

consistency and completeness of propositional

logic (no proofs).

4. Logic and hardware, basic gates (AND, NOT,

OR) and their universality, other gates (NAND,

NOR, XOR); inverter, half adder, full adder.

5. Control unit, system clock.

6. Memory - construction of a memory bit using a

flip-flop, D-flip-flop and its use in constructing

registers.

7. Memory organization and access; parity; memory

hierarchy - cache, primary memory, secondary

memory.

8. Instruction set and its representation; address,

addressing and addressing modes; instruction

cycle; machine language; stored program

computer (program as data).

9. Assembly language syntax and semantics (the

assembly language should be for the computer

above); assembler and the assembly process;

simple assembly language programs.

SECTION B

The programming element in the syllabus is aimed at

problem solving and not on merely rote learning of

the commands and syntax of particular programming

languages. Students have the option to use either C++

or Java in order to implement the high-level language

concepts and algorithms mentioned in the syllabus and

to use them for solving problems. Care must be taken

that ‘standard and recent’ versions of the languages

are used on the computer. Development environments

such as SUN Forte, Eclipse, BlueJ, Borland C++ or

Microsoft Visual C++, GNU C++ on Linux could be

used.

1. Introduction to High Level Language Concepts

a) Review of programming in Classes IX and X

i) Primitive data types supported by

the language (integers, floating point

numbers, characters, booleans, etc. - will

depend on the language), variables (and

their declaration - based on language),

assignment, difference between the left-

hand side and right-hand side of an

assignment.

ii) Expressions - arithmetic and logical,

evaluation of expressions, type of an

expression (depends on language).

Operators, associativity and precedence of

operators.

iii) Statements, blocks (where relevant),

scope and visibility of variables.

iv) Conditional statements (if and if-then-

else), switch, break, default.

v) Loops (for, while-do, do-while).

vi) Simple input/output using standard

input/output.

vii) Functions/subroutines as procedural

abstractions. Using functions/subroutines

in programs.

viii) Arguments and argument passing in

functions/subroutines.

ix) Scope of variables.

x) Structured types, arrays as an example of

a structured type. Use of arrays in sorting

and searching. Two-dimensional arrays.

Use of two-dimensional arrays to

represent matrices. Matrix arithmetic

using arrays. Use of arrays to solve linear

equations (Gauss elimination method).

xi) Review of input/output using standard

input and standard output. Input/output

using sequential files. Opening, closing

files. Creating and deleting files.

Formatting output. Concept of a token

and separator. Extracting tokens from the

input.

xii) Characters, ASCII representation, strings

as a composite data type; functions on

strings (e.g. length, substring,

concatenate, equality, accessing

individual characters in a string, inserting

a string in another string at a given

location).

 109

xiii) Simple type casting for primitive types;

inter-conversion between character/string

types and numeric types.

xiv) Distinction between compile time and run

time errors. Run time errors due to finite

representations - overflow, underflow.

Other run time errors.

xv) Basic ideas about linking, loading,

execution.

b) Objects and classes.

c) Analysis of some real world applications in

terms of objects and operations on objects.

d) Interface or public contract of a class.

e) Classes as types.

f) Examples of problem solving using objects.

g) Encapsulation and visibility (private and

public).

h) Static variables and functions.

i) Errors - compile time and run time.

Exceptions and exception handling.

j) Simple data structures - stack, queue, deque

(should be defined as classes); use of these

data structures in problem solving.

2. Implementation of algorithms to solve

problems

The students are required to do lab assignments in

the computer lab concurrently with the lectures.

Programming assignments should be done such

that each major topic is covered in at least one

assignment. Assignment problems should be

designed so that they are non-trivial and make the

student do both algorithm design as well use the

programming language to implement the

algorithm. Some sample problems are given at the

end of the syllabus.

3. Social context of computing and ethical issues

a) Intellectual property and corresponding laws

and rights, software as intellectual property.

b) Software patents, copyrights, and trademarks,

software licensing and piracy.

c) Free software foundation and its position on

software, open source software.

d) Privacy, email etiquette.

PAPER II-PRACTICAL

Paper II (Practical) will be evaluated internally by the

school. The evaluation shall consist of a 3-hour

practical examination at the end of the year and

evaluation of all assignments done throughout the

year.

The terminal examination of three hours duration shall

consist of three programming tasks from which the

candidates shall have to attempt any one. Candidates

will be required to write a program in C++/Java on the

computer to solve the task and give adequate written

documentation to explain the development process.

Teachers should maintain a record of all the

assignments done as part of the practical work through

the year and give it due credit at the time of

cumulative evaluation at the end of the year.

Marks (out of a total of 100) will be distributed as

given below:

Continuous Evaluation

Programming in C++/Java through the year - 40 marks

Terminal Evaluation

Program implementation in C++/Java on

the computer - 40 marks

Documentation, Viva-Voce - 20 marks

Given below are some sample problems that can be

taken up. The list however, is only suggestive. These

problems are of different levels of difficulty. They are

indicative of the kinds of problems students can try in

their labs. Most problems require the student to devise

an algorithm or to design suitable classes to model the

problem.

Suggested sample problems:

1. Implement a Calculator class that models a hand

held calculator. It should have (at least) the

following functionality: addition, subtraction,

multiplication, integer division, remainder, unary

minus, enter, clear.

 110

2. A student has a name, roll number, class in which

studying, home address and a date of birth. First

design a suitable class for Date. Write

constructors and get and set functions. Then

design a class for student. Write constructors, get

and set functions and a function to calculate the

age of a student (use today’s date in the function).

The age should be returned as a triple (year,

month, day). You will have to define a class for

Triple and return an object of this type as the age.

3. Write a class Convert with methods as follows:

a) takes 4 arguments representing miles, yards,

feet and inches and convert them into

kilometers, meters and centimeters.

b) takes an argument representing degrees

Fahrenheit and converts it to degrees

centigrade.

c) a kilobyte is interpreted in two ways: some

times it is 1000 bytes (actually correct), but

often (and traditionally) it is 2
10

 which is

1024. Similar discrepancies arise for mega,

giga, tera and peta (each is 1000 (or 2
10

)

times the previous one).

The function should take the 10
3
 (standard

kilo) and give the equivalent value using 2
10

as a kilo for all the above.

4. Older computers used Binary Coded Decimals

(BCD) to represent integers. In this each digit is

represented by using 4 bits. So 0 is 0000, 1 is

0001, 2 is 0010, ... 9 is 1001. The remaining 4 bit

patterns, namely 1010 onwards are illegal. So 32

bits can store upto 8 digits. To represent a

negative number the sign is also encoded using 4

bits. However, we are interested only in positive

BCD numbers. For example assuming we have 32

bits the number 123 will be represented as (0000)

5 times followed by 000100100011. Define a

class BCD with a single constructor, which takes

an integer argument and creates its BCD

equivalent. Write methods for adding, subtracting

BCD numbers. Also, write methods to check for

the relations <, > and == between two BCD

numbers.

5. n is a perfect number if the sum of all the factors

of the number (including 1) excluding itself is n.

For example:

 6 = 1+2+3

 28=1+2+4+7+14

 n is a prime number if it is divisible only by 1 and

itself.

 Define a class called NumberProblems which has

the following functions:

 int nthPrime(int n) - which returns the nth prime

number. So

 nthPrime(1) = 2 (remember 1 is not considered a

prime number)

 nthPrime(3) = 5

 nthPrime(6) = 13

 Write another function:

 void perfectNosBelow(int n) - which first prints

out the nth prime number then prints out all

perfect numbers less than the nth prime number.

Each perfect number should be printed on a single

line along with its factors (see below). So for

example the output from perfectNosBelow(5) will

be:

 5th

prime number=11

6= (1,2,3)

 111

CLASS XII

There will be two papers in the subject:

Paper I: Theory- 3 hours …100 marks

Paper II: Practical- 3 hours …100 marks

PAPER I-THEORY

Paper 1 shall be of 3 hours duration and be divided

into two parts.

Part I (30 marks): This part will consist of

compulsory short answer questions, testing

knowledge, application and skills relating to

elementary/fundamental aspects of the entire syllabus.

Part II (70 marks): This part will be divided into two

Sections, A and B. Candidates are required to answer

three questions out of five from Section A and four

questions out of six from Section B. Each question in

this part shall carry 10 marks.

SECTION A

1. Boolean Algebra

(i) Propositional logic, well formed formulae,

truth values and interpretation of well formed

formulae, truth tables, basic ideas and results

about consistency and completeness of

prepositional logic (no proofs).

(ii) Binary valued quantities; basic postulates of

Boolean algebra; operations of AND, OR and

NOT; truth tables.

(iii) Basic theorems of Boolean algebra; principle

of duality; idempotent law; commutative law;

associative law; distributive law; operations

with 0, 1 and complements; absorption law;

involution; De Morgan’s theorem and its

applications; reducing Boolean expressions to

sum of products and product of sums forms;

Karnaugh maps (up to four variables).

2. Computer Hardware

(i) Elementary logic gates (NOT, AND, OR,

NAND, NOR, XOR, XNOR) and their uses in

circuits.

(ii) Applications of Boolean algebra and logic

gates to half adders, full adders, encoders,

decoders, multiplexers, use of NAND, NOR

as universal gates.

SECTION B

The programming element in the syllabus is aimed at

problem solving and not on merely rote learning of

the commands and syntax of particular programming

languages. Students have the option to use either C++

or Java in order to implement the high-level language

concepts and algorithms mentioned in the syllabus and

to use them for solving problems. Care must be taken

that ‘standard and recent’ versions of the languages

are used on the computer- it is recommended that

students mention the version of the language being

used while writing answers in order to avoid

ambiguity. For example, development environments

such as SUN Forte, Eclipse, BlueJ, Borland C++ or

Microsoft Visual C++, GNU C++ on Linux could be

used.

1. Programming in C++/Java

(i) Review of programming and algorithms from

Class XI

a) Primitive data types supported by the

language (integers, floating point

numbers, characters, booleans etc. - will

depend on the language), variables (and

their declaration - based on language),

assignment, difference between the left-

hand side and right-hand side of an

assignment.

b) Expressions - arithmetic and logical,

evaluation of expressions, type of an

expression (depends on language).

Operators, associativity and precedence of

operators.

c) Statements, blocks (where relevant),

scope and visibility of variables.

d) Conditional statements (if and if-then-

else), switch, break, default.

e) Loops (for, while-do, do-while).

f) Simple input/output using standard

input/output.

 112

g) Functions/subroutines as procedural

abstractions. Using functions/subroutines

in programs.

h) Arguments and argument passing in

functions/subroutines.

i) Scope of variables.

j) Structured types, arrays as an example of

a structured type. Use of arrays in sorting

and searching. Two-dimensional arrays.

Use of two-dimensional arrays to

represent matrices. Matrix arithmetic

using arrays. Use of arrays to solve linear

equations (Gauss elimination method).

k) Review of input/output using standard

input and standard output from class IX.

Input/output using sequential files.

Opening, closing files. Creating and

deleting files. Formatting output. Concept

of a token and separator. Extracting

tokens from the input.

l) Characters, ASCII representation, strings

as a composite data type; functions on

strings (e.g. length, substring,

concatenate, equality, accessing

individual characters in a string, inserting

a string in another string at a given

location)

m) Simple type casting for primitive types;

inter-conversion between character/string

types and numeric types.

n) Distinction between compile time and run

time errors. Run time errors due to finite

representations - overflow, underflow.

Other run time errors.

o) Basic ideas about linking, loading,

execution.

p) Objects and classes.

q) Analysis of some real world applications

in terms of objects and operations on

objects.

r) Interface or public contract of a class.

s) Classes as types.

t) Examples of problem solving using

objects.

u) Encapsulation and visibility (private and

public).

v) Static variables and functions.

w) Errors - compile time and run time.

Exceptions and exception handling.

x) Simple data structures - stack, queue,

deque (should be defined as classes); use

of these data structures in problem

solving.

(ii) Recursion and recursive functions.

(iii) Recursive data structures - lists, binary trees,

tree traversals, binary search tree.

(iv) Problem solving using recursive data

structures.

(v) Basic concept of inheritance (only single

inheritance should be used), base and derived

classes.

(vi) Member access in derived classes.

(vii) Redefinition of member variables and

member functions.

(viii) Object construction in the presence of

inheritance.

(ix) Libraries and use of library classes (details

will vary with the language used - container

class library can be used as an example).

5. Implementation of algorithms to solve problems

A list of suggested algorithms and general problems

is given at the end of this syllabus. These are of an

indicative nature to the type of problems that may

be set for the students and that should be used in

Classes XI and XII. The students will be expected

to know the algorithmic solution to solve a

particular problem and then be able to implement

the solution using either C++ or Java.

 113

PAPER II-PRACTICAL

Paper 2 (Practical) of three hours duration will be

evaluated by the teacher and a Visiting Examiner

appointed locally and approved by the Council. The

practical will consist of two parts: Planning Session

and Examination Session. On completion of Planning

Session, students may proceed to the Examination

Session.

1. Planning Session

Candidates will be required to choose one question

from those set in the question paper for the practical

examination and prepare an algorithm and a hand

written program in C++/Java and other relevant

documentation to solve the problem.

2. Examination Session

The computer program handed in at the end of the

planning session shall be returned to the candidates.

Candidates will then be required to key-in and run

their programs individually on the computer and

submit the printout results to the Visiting Examiner.

Marks (out of a total of 100) should be distributed as

given below:

Continuous Evaluation

Candidates will be required to submit a work file
containing the practical work related to programming
assignments done during the year.

Programming in C++/Java through the year

(Internal evaluation) - 10 marks

Programming in C++/Java through the year

(Visiting Examiner) - 10 marks

Terminal Evaluation

Program implementation in C++/Java on

the computer - 80 marks

(which includes preparing the algorithm, writing and

testing of the programme, execution and viva voce.)

Given below are some sample problems that can be

taken up. The list however, is only suggestive. These

problems are of different levels of difficulty. They are

indicative of the kinds of problems students can try in

their labs. Most problems require the student to devise

an algorithm or to design suitable classes to model the

problem.

Suggested sample problems:

1. Define class Point to model points in the X-Y

plane. Define functions to translate a point along

the X and Y axes respectively. Define a function

that calculates the distance from another point.

2. Now use the Point class to define a Rectangle

class where a rectangle is modeled by specifying

all the four corners of the rectangle. Write

separate functions to:

i) Calculate the perimeter and area of the

rectangle.

ii) Translate the rectangle along the X-axis, Y-

axis and X-Y axes (simultaneously).

iii) Rotate the rectangle by an angle (in degrees)

around an axis passing through the center of

the rectangle and passing through the X-Y

plane.

iv) Check if the rectangle intersects (i.e. overlaps

partially or completely) another rectangle. It

should return true if there is an overlap and

false otherwise. An overlap of rectangles is

defined as: there is at least one point in

common between the two rectangles.

3. We want to build the basic backbone of a simple

railway reservation system. The following classes

are required to model the system: Person,

PersonGroup, Date, Train, RailReservationRecord.

You have to invent the requisite attributes and

functions for the various classes based on a

description of the functionality and constraints of

RailReservationRecord object given below:

a) Reservation is made from a start station to a

destination station on a single train, in a

particular class, for a particular date, for a

maximum of 6 persons. So we are not taking

care of journeys requiring two or more trains.

b) Reservation can be made up to a maximum of

60 days and up to a minimum of 1 day before

the date of departure.

 114

c) Reservations already made can be canceled

for the entire group of persons or for a subset

of the group of persons in the reservation

record.

d) Assume that the trains have infinite capacity.

So you need not make checks to see whether

space is available or not.

e) For reserving accommodation each

passenger’s name, gender and age is required.

f) Each RailReservationRecord object must have

a unique reference number/string for access

purposes.

 You can use classes you may have defined in

some of your earlier labs. You can also invent

more classes than the ones listed above if you

think they are necessary. All your classes should

have proper access declarators private, public, etc.

4. We want to model the following situation using a

class hierarchy. Shapes can be closed or open.

Closed shapes can be one of: polygon, circle or

ellipse. A polygon is a triangle, a quadrilateral or

an n-gon (that is, an n sided polygon where n>4).

Triangles are isosceles, equilateral or scalene. A

closed shape is represented by an array of points.

The shape is realized by joining the points in the

array, by a straight line, in order of increasing

index. Finally, the last point is joined to the first

point by a straight line thus closing the figure.

 There are three operations common to all shapes:

perimeter, area and is Convex. The function

perimeter calculates and returns the perimeter of

the shape, area similarly, calculates and returns

the area of the shape and is Convex returns true if

the shape is convex and false otherwise.

Define the class hierarchy above. Define the

functions in the right classes in the hierarchy so

that over riding is minimal. The design should be

such that objects can be created only for those

classes that are at the leaves of the hierarchy tree

(that is, classes which do not have any direct sub

classes).

5. Write a program (as a, possibly static, method of a

class) which takes a string argument and prints out

all permutations of the string with each

permutation being printed out only once if

characters are not repeated in the string. For

example, if the string argument is "abc" one

possible printout is -

abc acb bca bac cab cba (the order in which the

permutations are printed is not important). Your

program should use a recursive function.

6. A popular children's puzzle is the 15-puzzle. This
puzzle has a frame that can hold 16 tiles. It has
tiles numbered from 1 to 15 and one empty space.
The goal is to slide the tiles using the empty space
such that all tiles are arranged in ascending order
row wise. For example if 0 represents the empty
space a little trial and error shows that the
following initial configuration can be taken to the
goal configuration:

1 2 3 4

5 6 0 7

9 10 12 8

13 14 11 15

Write a program which, given an initial

configuration prints out the moves which will take

the puzzle to the goal configuration.

Note that random initial configurations may not

always have a solution. (A much harder problem

is to determine if given an arbitrary initial

configuration whether it is solvable - that is the

goal configuration is reachable).

 115

EQUIPMENT

There should be enough computer systems to provide

for a teaching schedule where at least three-fourths of

the time available is used for programming.

Schools should have equipment/platforms such that all

the software required for practical work runs properly,

i.e. it should run at acceptable speeds.

Since hardware and software evolve and change very

rapidly, the schools shall need to upgrade them as

required. Following are the recommended

specifications as of now:

The Facilities:

• A lecture cum demonstration room with a

MULTIMEDIA PROJECTOR/ an LCD and

O.H.P. attached to the computer.

• A white board with white board markers should

be available.

• A fully equipped Computer Laboratory that

allows one computer per student.

• Internet connection for accessing the World Wide

Web and email facility.

• The computers should have a Minimum of 128

MB RAM and a PIII or Equivalent Processor.

• Good Quality printers.

Software:

• Any suitable Operating System can be used.

The criteria used in the selection of software should

be:

� It should have a good user interface so that the

beginners may learn to use it easily.

� It should be used widely and be easily available.

� The material related to the software should be

abundantly available.

The schools should ensure that latest versions of

software are used.

